Time-Domain Solution of LTI State Equations

نویسنده

  • Derek Rowell
چکیده

that is, as a set of coupled, first-order differential equations. The solution proceeds in two steps; first the state-variable response x(t) is found by solving the set of first-order state equations, Eq. (1), and then the state response is substituted into the algebraic output equations, Eq. (2) in order to compute y(t). As in the classical solution method for ordinary differential equations with constant coefficients, the total system state response x(t) is considered in two parts: a homogeneous solution xh(t) that describes the response to an arbitrary set of initial conditions x(0), and a particular solution xp(t) that satisfies the state equations for the given input u(t). The two components are then combined to form the total response. The solution methods used in this note rely heavily on matrix algebra. In order to keep the treatment simple we attempt wherever possible to introduce concepts using a first-order system, in which the A, B, C, and D matrices reduce to scalar values, and then to generalize results by replacing the scalars with the appropriate matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach

In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...

متن کامل

Modified Lyapunov Equations for Lti Descriptor Systems

Abstract. For linear time-invariant (LTI) state space systems it is well-known that its asymptotic stability can be related to solution properties of the Lyapunov matrix equation according to so-called inertia theorems. The question now arises how analogous results can be obtained for LTI descriptor systems (singular systems, differential-algebraic equations). The stability behaviour of a LTI d...

متن کامل

Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures

Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...

متن کامل

AIOSC: Analytical Integer Word-length Optimization based on System Characteristics for Recursive Fixed-point LTI Systems

The integer word-length optimization known as range analysis (RA) of the fixed-point designs is a challenging problem in high level synthesis and optimization of linear-time-invariant (LTI) systems. The analysis has significant effects on the resource usage, accuracy and efficiency of the final implementation, as well as the optimization time. Conventional methods in recursive LTI systems suffe...

متن کامل

Numerical solution of Fredholm integral-differential equations on unbounded domain

In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002